Minimizing Spurious Switching Activities with Transistor Sizing
نویسندگان
چکیده
In combinatorial blocks of static CMOS circuits transistor sizing can be applied for delay balancing as to guarantee synchronously arriving signal slopes at the input of logic gates, thereby avoiding glitches. Since the delay of logic gates depends directly on transistor sizes, their variation allows to equalize different path delays without influencing the total delay of the circuit. Unfortunately not only the delay, but also power consumption circuit depend on the transistor sizes. To achieve optimal results, transistor lengths have to be increased, which results in both increased gate capacitances and area. Splitting the long transistors counteracts this negative influence.
منابع مشابه
Automated transistor sizing algorithm for minimizing spurious switching activities in CMOS circuits
In this paper a new approach for minimizing glitches in the combinational parts of static CMOS circuits is presented. Delay balancing is applied in order to guarantee synchronously arriving signal slopes at the inputs of the logic gates. Thus, glitching can be avoided. The delay of a logic gate depends directly on the transistor sizes, i.e. the channel-widths and -lengths (W and L). Specific va...
متن کاملA New Methodology for Power-Aware Transistor Sizing: Free Power Recovery (FPR)
In this paper we present a new transistor sizing methodology called Free Power Recovery (FPR) for low power circuit design. The objective of this methodology is to minimize the total power of a circuit by accounting for node switching activities and leakage duty cycles (LDC). The methodology has been incorporated into the EinsTuner circuit tuning tool. EinsTuner automates the tuning process usi...
متن کاملTransistor Sizing for Low Power CMOS Circuits - Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
AbstructA direct approach to transistor sizing for minimizing the power consumption of a CMOS circuit under a delay constraint is presented. In contrast to the existing assumption that the power consumption of a static CMOS circuit is proportional to the active area of the circuit, it is shown that the power consumption is a convex function of the active area. Analytical formulation for the pow...
متن کاملTransistor sizing for low power CMOS circuits
A direct approach to transistor sizing for minimizing the power consumption of a CMOS circuit under a delay constraint is presented. In contrast to the existing assumption that the power consumption of a static CMOS circuit is proportional to the active area of the circuit, it is shown that the power consumption is a convex function of the active area. Analytical formulation for the power dissi...
متن کاملInvestigation and simulation of the effect of Substrate Doping on the Switching Delay of 22nm Double-Insulating UTBB SOI MOSFET
In this paper, for the first time, the effect of the substrate doping of 22nm double-insulating UTBB silicon-on-insulator device on the switching performance and turn-on delay of the transistor is investigated. In UTBB devices, the substrate voltage is varied from positive to zero then negative voltages to trade-off transistor speed against the leakage current. Various circuit design procedures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- VLSI Design
دوره 2002 شماره
صفحات -
تاریخ انتشار 2002